Estou usando o keras para a CNN, mas o problema é que há vazamento de memória. O erro é
anushreej@cpusrv-gpu-109:~/12EC35005/MTP_Workspace/MTP$ python cnn_implement.py
Using Theano backend.
[INFO] compiling model...
Traceback (most recent call last):
File "cnn_implement.py", line 23, in <module>
model = CNNModel.build(width=150, height=150, depth=3)
File "/home/ms/anushreej/12EC35005/MTP_Workspace/MTP/cnn/networks/model_define.py", line 27, in build
model.add(Dense(depth*height*width))
File "/home/ms/anushreej/anaconda3/lib/python3.5/site-packages/keras/models.py", line 146, in add
output_tensor = layer(self.outputs[0])
File "/home/ms/anushreej/anaconda3/lib/python3.5/site-packages/keras/engine/topology.py", line 458, in __call__
self.build(input_shapes[0])
File "/home/ms/anushreej/anaconda3/lib/python3.5/site-packages/keras/layers/core.py", line 604, in build
name='{}_W'.format(self.name))
File "/home/ms/anushreej/anaconda3/lib/python3.5/site-packages/keras/initializations.py", line 61, in glorot_uniform
return uniform(shape, s, name=name)
File "/home/ms/anushreej/anaconda3/lib/python3.5/site-packages/keras/initializations.py", line 32, in uniform
return K.variable(np.random.uniform(low=-scale, high=scale, size=shape),
File "mtrand.pyx", line 1255, in mtrand.RandomState.uniform (numpy/random/mtrand/mtrand.c:13575)
File "mtrand.pyx", line 220, in mtrand.cont2_array_sc (numpy/random/mtrand/mtrand.c:2902)
MemoryError
Agora não consigo entender por que isso está acontecendo. Minhas imagens de treinamento são muito pequenas do tamanho 150 * 150 * 3.
O código é -:
# import the necessary packages
from keras.models import Sequential
from keras.layers.convolutional import Convolution2D
from keras.layers.core import Activation
from keras.layers.core import Flatten
from keras.layers.core import Dense
class CNNModel:
@staticmethod
def build(width, height, depth):
# initialize the model
model = Sequential()
# first set of CONV => RELU
model.add(Convolution2D(50, 5, 5, border_mode="same", batch_input_shape=(None, depth, height, width)))
model.add(Activation("relu"))
# second set of CONV => RELU
# model.add(Convolution2D(50, 5, 5, border_mode="same"))
# model.add(Activation("relu"))
# third set of CONV => RELU
# model.add(Convolution2D(50, 5, 5, border_mode="same"))
# model.add(Activation("relu"))
model.add(Flatten())
model.add(Dense(depth*height*width))
# if weightsPath is not None:
# model.load_weights(weightsPath)
return model