Causa da fragmentação da página no servidor “grande” com xfs, 20 discos e Ceph

18

Qualquer insight de alguém com um pouco de experiência no sistema linux IO seria útil. Aqui está a minha história:

Recentemente, criou um cluster de seis Dell PowerEdge rx720xds para servir arquivos via Ceph. Essas máquinas têm 24 núcleos em dois soquetes com duas zonas numa e 70 gigabytes ímpares de memória. Os discos são formatados como invasões de um disco cada (não poderíamos ver uma maneira de expô-los diretamente de outra forma). A rede é fornecida pelo mellanox infiniband IP over IB (os pacotes IP são transformados em IB no kernel, não em hardware).

Cada um dos nossos drives SAS é montado da seguinte forma:

# cat /proc/mounts | grep osd
/dev/sdm1 /var/lib/ceph/osd/ceph-90 xfs rw,noatime,attr2,inode64,noquota 0 0
/dev/sdj1 /var/lib/ceph/osd/ceph-87 xfs rw,noatime,attr2,inode64,noquota 0 0
/dev/sdu1 /var/lib/ceph/osd/ceph-99 xfs rw,noatime,attr2,inode64,noquota 0 0
/dev/sdd1 /var/lib/ceph/osd/ceph-82 xfs rw,noatime,attr2,inode64,noquota 0 0
/dev/sdk1 /var/lib/ceph/osd/ceph-88 xfs rw,noatime,attr2,inode64,noquota 0 0
/dev/sdl1 /var/lib/ceph/osd/ceph-89 xfs rw,noatime,attr2,inode64,noquota 0 0
/dev/sdh1 /var/lib/ceph/osd/ceph-86 xfs rw,noatime,attr2,inode64,noquota 0 0
/dev/sdo1 /var/lib/ceph/osd/ceph-97 xfs rw,noatime,attr2,inode64,noquota 0 0
/dev/sdc1 /var/lib/ceph/osd/ceph-81 xfs rw,noatime,attr2,inode64,noquota 0 0
/dev/sdb1 /var/lib/ceph/osd/ceph-80 xfs rw,noatime,attr2,inode64,noquota 0 0
/dev/sds1 /var/lib/ceph/osd/ceph-98 xfs rw,noatime,attr2,inode64,noquota 0 0
/dev/sdn1 /var/lib/ceph/osd/ceph-91 xfs rw,noatime,attr2,inode64,noquota 0 0
/dev/sde1 /var/lib/ceph/osd/ceph-83 xfs rw,noatime,attr2,inode64,noquota 0 0
/dev/sdq1 /var/lib/ceph/osd/ceph-93 xfs rw,noatime,attr2,inode64,noquota 0 0
/dev/sdg1 /var/lib/ceph/osd/ceph-85 xfs rw,noatime,attr2,inode64,noquota 0 0
/dev/sdt1 /var/lib/ceph/osd/ceph-95 xfs rw,noatime,attr2,inode64,noquota 0 0
/dev/sdf1 /var/lib/ceph/osd/ceph-84 xfs rw,noatime,attr2,inode64,noquota 0 0
/dev/sdr1 /var/lib/ceph/osd/ceph-94 xfs rw,noatime,attr2,inode64,noquota 0 0
/dev/sdi1 /var/lib/ceph/osd/ceph-96 xfs rw,noatime,attr2,inode64,noquota 0 0
/dev/sdp1 /var/lib/ceph/osd/ceph-92 xfs rw,noatime,attr2,inode64,noquota 0 0

O IO passando por essas máquinas explode em algumas centenas de MB / s, mas a maior parte do tempo é bastante ocioso com um monte de pequenas 'cutucadas':

# iostat -x -m
Linux 3.10.0-123.el7.x86_64 (xxx)   07/11/14    _x86_64_    (24 CPU)

avg-cpu:  %user   %nice %system %iowait  %steal   %idle
       1.82    0.00    1.05    0.11    0.00   97.02
Device:         rrqm/s   wrqm/s     r/s     w/s    rMB/s    wMB/s avgrq-sz avgqu-sz   await r_await w_await  svctm  %util
sda               0.00     0.11    0.25    0.23     0.00     0.00    27.00     0.00    2.07    3.84    0.12   0.61   0.03
sdb               0.02     0.57    3.49    2.28     0.08     0.14    77.18     0.01    2.27    2.99    1.18   1.75   1.01
sdd               0.03     0.65    3.93    3.39     0.10     0.16    70.39     0.01    1.97    2.99    0.79   1.57   1.15
sdc               0.03     0.60    3.76    2.86     0.09     0.13    65.57     0.01    2.10    3.02    0.88   1.68   1.11
sdf               0.03     0.63    4.19    2.96     0.10     0.15    73.51     0.02    2.16    3.03    0.94   1.73   1.24
sdg               0.03     0.62    3.93    3.01     0.09     0.15    70.44     0.01    2.06    3.01    0.81   1.66   1.15
sde               0.03     0.56    4.35    2.61     0.10     0.14    69.53     0.02    2.26    3.00    1.02   1.82   1.26
sdj               0.02     0.73    3.67    4.74     0.10     0.37   116.06     0.02    1.84    3.01    0.93   1.31   1.10
sdh               0.03     0.62    4.31    3.04     0.10     0.15    67.83     0.02    2.15    3.04    0.89   1.75   1.29
sdi               0.02     0.59    3.82    2.47     0.09     0.13    74.35     0.01    2.20    2.96    1.03   1.76   1.10
sdl               0.03     0.59    4.75    2.46     0.11     0.14    70.19     0.02    2.33    3.02    1.00   1.93   1.39
sdk               0.02     0.57    3.66    2.41     0.09     0.13    73.57     0.01    2.20    3.00    0.97   1.76   1.07
sdm               0.03     0.66    4.03    3.17     0.09     0.14    66.13     0.01    2.02    3.00    0.78   1.64   1.18
sdn               0.03     0.62    4.70    3.00     0.11     0.16    71.63     0.02    2.25    3.01    1.05   1.79   1.38
sdo               0.02     0.62    3.75    2.48     0.10     0.13    76.01     0.01    2.16    2.94    0.99   1.70   1.06
sdp               0.03     0.62    5.03    2.50     0.11     0.15    68.65     0.02    2.39    3.08    0.99   1.99   1.50
sdq               0.03     0.53    4.46    2.08     0.09     0.12    67.74     0.02    2.42    3.04    1.09   2.01   1.32
sdr               0.03     0.57    4.21    2.31     0.09     0.14    72.05     0.02    2.35    3.00    1.16   1.89   1.23
sdt               0.03     0.66    4.78    5.13     0.10     0.20    61.78     0.02    1.90    3.10    0.79   1.49   1.47
sdu               0.03     0.55    3.93    2.42     0.09     0.13    70.77     0.01    2.17    2.97    0.85   1.79   1.14
sds               0.03     0.60    4.11    2.70     0.10     0.15    74.77     0.02    2.25    3.01    1.10   1.76   1.20
sdw               1.53     0.00    0.23   38.90     0.00     1.66    87.01     0.01    0.22    0.11    0.22   0.05   0.20
sdv               0.88     0.00    0.16   28.75     0.00     1.19    84.55     0.01    0.24    0.10    0.24   0.05   0.14
dm-0              0.00     0.00    0.00    0.00     0.00     0.00     8.00     0.00    1.84    1.84    0.00   1.15   0.00
dm-1              0.00     0.00    0.23    0.29     0.00     0.00    23.78     0.00    1.87    4.06    0.12   0.55   0.03
dm-2              0.00     0.00    0.01    0.00     0.00     0.00     8.00     0.00    0.47    0.47    0.00   0.45   0.00

O problema:

Após cerca de 48 horas depois, as páginas contíguas são tão fragmentadas que as quatro alocações de magniutde (16 páginas, 65536 bytes) começam a falhar e começamos a eliminar pacotes (devido à falha do kalloc quando um SLAB é desenvolvido).

É assim que um servidor relativamente "saudável" se parece:

# cat /sys/kernel/debug/extfrag/unusable_index
Node 0, zone      DMA 0.000 0.000 0.000 0.001 0.003 0.007 0.015 0.031 0.031 0.096 0.225 
Node 0, zone    DMA32 0.000 0.009 0.015 0.296 0.733 0.996 0.997 0.998 0.998 1.000 1.000 
Node 0, zone   Normal 0.000 0.000 0.019 0.212 0.454 0.667 0.804 0.903 0.986 1.000 1.000 
Node 1, zone   Normal 0.000 0.027 0.040 0.044 0.071 0.270 0.506 0.772 1.000 1.000 1.000 

Quando a fragmentação fica consideravelmente pior, o sistema parece começar a girar no espaço do kernel e tudo simplesmente se desfaz. Uma anomalia durante essa falha é que o xfsaild parece usar muita CPU e fica preso no estado de suspensão ininterrupta. Eu não quero tirar conclusões precipitadas com estranheza durante a falha total do sistema.

Solução até o momento.

Para garantir que essas alocações não falhem, mesmo com a fragmentação, defino:

vm.min_free_kbytes = 16777216

Depois de ver milhões de blkdev_requests em caches SLAB, tentei reduzir páginas sujas por meio de:

vm.dirty_ratio = 1
vm.dirty_background_ratio = 1
vm.min_slab_ratio = 1
vm.zone_reclaim_mode = 3

Possivelmente alterando muitas variáveis de uma só vez, mas apenas no caso de inodes e dentries estarem causando fragmentação, decidi mantê-los no mínimo:

vm.vfs_cache_pressure = 10000

E isso pareceu ajudar. A fragmentação ainda é alta, e os problemas reduzidos de inode e dentry fizeram com que eu notasse algo estranho que me leva a ...

Minha pergunta:

Por que eu tenho tantos blkdev_requests (que não estão ativos), que simplesmente desaparecem quando eu deixo caches?

Eis o que quero dizer:

# slabtop -o -s c | head -20
 Active / Total Objects (% used)    : 19362505 / 19431176 (99.6%)
 Active / Total Slabs (% used)      : 452161 / 452161 (100.0%)
 Active / Total Caches (% used)     : 72 / 100 (72.0%)
 Active / Total Size (% used)       : 5897855.81K / 5925572.61K (99.5%)
 Minimum / Average / Maximum Object : 0.01K / 0.30K / 15.69K

  OBJS ACTIVE  USE OBJ SIZE  SLABS OBJ/SLAB CACHE SIZE NAME                   
2565024 2565017  99%    1.00K  80157       32   2565024K xfs_inode              
3295194 3295194 100%    0.38K  78457       42   1255312K blkdev_requests        
3428838 3399527  99%    0.19K  81639       42    653112K dentry                 
5681088 5680492  99%    0.06K  88767       64    355068K kmalloc-64             
2901366 2897861  99%    0.10K  74394       39    297576K buffer_head            
 34148  34111  99%    8.00K   8537        4    273184K kmalloc-8192           
334768 334711  99%    0.57K  11956       28    191296K radix_tree_node        
614959 614959 100%    0.15K  11603       53     92824K xfs_ili                
 21263  19538  91%    2.84K   1933       11     61856K task_struct            
 18720  18636  99%    2.00K   1170       16     37440K kmalloc-2048           
 32032  25326  79%    1.00K   1001       32     32032K kmalloc-1024           
 10234   9202  89%    1.88K    602       17     19264K TCP                    
 22152  19765  89%    0.81K    568       39     18176K task_xstate

# echo 2 > /proc/sys/vm/drop_caches                                                                                                                                                   :(
# slabtop -o -s c | head -20       
 Active / Total Objects (% used)    : 965742 / 2593182 (37.2%)
 Active / Total Slabs (% used)      : 69451 / 69451 (100.0%)
 Active / Total Caches (% used)     : 72 / 100 (72.0%)
 Active / Total Size (% used)       : 551271.96K / 855029.41K (64.5%)
 Minimum / Average / Maximum Object : 0.01K / 0.33K / 15.69K

  OBJS ACTIVE  USE OBJ SIZE  SLABS OBJ/SLAB CACHE SIZE NAME                   
 34140  34115  99%    8.00K   8535        4    273120K kmalloc-8192           
143444  20166  14%    0.57K   5123       28     81968K radix_tree_node        
768729 224574  29%    0.10K  19711       39     78844K buffer_head            
 73280   8287  11%    1.00K   2290       32     73280K xfs_inode              
 21263  19529  91%    2.84K   1933       11     61856K task_struct            
686848  97798  14%    0.06K  10732       64     42928K kmalloc-64             
223902  41010  18%    0.19K   5331       42     42648K dentry                 
 32032  23282  72%    1.00K   1001       32     32032K kmalloc-1024           
 10234   9211  90%    1.88K    602       17     19264K TCP                    
 22152  19924  89%    0.81K    568       39     18176K task_xstate            
 69216  59714  86%    0.25K   2163       32     17304K kmalloc-256            
 98421  23541  23%    0.15K   1857       53     14856K xfs_ili                
  5600   2915  52%    2.00K    350       16     11200K kmalloc-2048           

Isso me diz que o acúmulo de blkdev_request não é relacionado a páginas sujas e, além disso, que os objetos ativos não são realmente ativos? Como esses objetos podem ser liberados se não estiverem de fato em uso? O que está acontecendo aqui?

Para algum contexto, veja o que o drop_caches está fazendo:

link

Atualização:

Trabalhou que eles podem não ser blkdev_requests, mas podem ser entradas xfs_buf aparecendo sob esse título? Não tenho certeza de como isso funciona:

/sys/kernel/slab # ls -l blkdev_requests(
lrwxrwxrwx 1 root root 0 Nov  7 23:18 blkdev_requests -> :t-0000384/

/sys/kernel/slab # ls -l | grep 384
lrwxrwxrwx 1 root root 0 Nov  7 23:18 blkdev_requests -> :t-0000384/
lrwxrwxrwx 1 root root 0 Nov  7 23:19 ip6_dst_cache -> :t-0000384/
drwxr-xr-x 2 root root 0 Nov  7 23:18 :t-0000384/
lrwxrwxrwx 1 root root 0 Nov  7 23:19 xfs_buf -> :t-0000384/

Eu ainda não sei por que eles são limpos pelo 'drop_slabs', ou como descobrir o que está causando essa fragmentação.

Pergunta bônus: qual é a melhor maneira de chegar à fonte dessa fragmentação?

Se você leu até aqui, obrigado pela sua atenção!

Informações solicitadas extra:

Informação de memória e xfs: link

Falha na alocação de página: link

Acompanhamento: informações relacionadas à compactação e coisas relacionadas à compactação

link

O código de compactação parece um pouco ineficiente, né? Eu montei um código para tentar replicar as compactações com falha: link

Isso parece reproduzir o problema.

Também observarei que um rastreamento de eventos informa que há várias recuperações com falha, repetidas vezes:

<...>-322 [023] .... 19509.445609: mm_vmscan_direct_reclaim_end: nr_reclaimed=1

A saída do Vmstat também é preocupante. Enquanto o sistema está nesse estado de carga alta, as compactações estão passando pelo telhado (e na maioria das vezes falhando):

pgmigrate_success 38760827 pgmigrate_fail 350700119 compact_migrate_scanned 301784730 compact_free_scanned 204838172846 compact_isolated 18711615 compact_stall 270115 compact_fail 244488 compact_success 25212

Existe de fato algo errado com recuperação / compactação.

No momento, estou olhando para reduzir as altas alocações de pedidos, adicionando o suporte do SG à nossa configuração do ipoib. A questão real parece provável vmscan relacionado.

Isso é interessante e faz referência a essa pergunta: link

    
por pingu 08.11.2014 / 00:09

1 resposta

4

Eu pensei em colocar uma resposta com minhas observações porque há muitos comentários.

Com base na sua saída, no link

Podemos determinar o seguinte:

  1. O GFP_MASK para a alocação de memória tentou fazer o seguinte.
    • É possível acessar pools de emergência (acho <<> que isso significa dados de acesso abaixo da marca d'água alta de uma zona)
    • Não use reservas de emergência (eu acho que isso significa não permitir acesso à memoria abaixo da marca d'água mínima)
    • Aloca de uma das zonas normais.
    • Pode trocar para criar espaço.
    • É possível descartar caches para criar espaço.

A fragmentação da zona é a localização aqui:

[3443189.780792] Node 0 Normal: 3300*4kB (UEM) 8396*8kB (UEM) 4218*16kB (UEM) 76*32kB (UEM) 12*64kB (M) 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 151056kB
[3443189.780801] Node 1 Normal: 26667*4kB (UEM) 6084*8kB (UEM) 2040*16kB (UEM) 96*32kB (UEM) 22*64kB (UEM) 4*128kB (U) 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 192972kB

E a utilização de memória no momento está aqui:

[3443189.780759] Node 0 Normal free:149520kB min:40952kB low:51188kB high:61428kB active_anon:9694208kB inactive_anon:1054236kB active_file:7065912kB inactive_file:7172412kB unevictable:0kB isolated(anon):5452kB isolated(file):3616kB present:30408704kB managed:29881160kB mlocked:0kB dirty:0kB writeback:0kB mapped:25440kB shmem:743788kB slab_reclaimable:1362240kB slab_unreclaimable:783096kB kernel_stack:29488kB pagetables:43748kB unstable:0kB bounce:0kB free_cma:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no
[3443189.780766] Node 1 Normal free:191444kB min:45264kB low:56580kB high:67896kB active_anon:11371988kB inactive_anon:1172444kB active_file:8084140kB inactive_file:8556980kB unevictable:0kB isolated(anon):4388kB isolated(file):4676kB present:33554432kB managed:33026648kB mlocked:0kB dirty:0kB writeback:0kB mapped:45400kB shmem:2263296kB slab_reclaimable:1606604kB slab_unreclaimable:438220kB kernel_stack:55936kB pagetables:44944kB unstable:0kB bounce:0kB free_cma:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no

A fragmentação de cada zona é ruim na saída de falha de alocação da página. Há muitas páginas de pedidos grátis com muito menos ou nenhuma página de ordem superior. Um resultado "bom" será uma grande quantidade de páginas ao longo de cada pedido, diminuindo gradualmente de tamanho, quanto maior a ordem. Ter 0 páginas de alta ordem 5 e acima indica fragmentação e fome para alocações de alta ordem.

Atualmente, não vejo um grau convincente de evidência que sugira que a fragmentação durante esse período tenha relação com caches de placas. Nas estatísticas de memória resultantes, podemos ver o seguinte

Node 0 = active_anon:9694208kB inactive_anon:1054236kB
Node 1 = active anon:11371988kB inactive_anon:1172444kB

Não há páginas grandes atribuídas a partir do espaço do usuário, e o espaço do usuário sempre terá a memória da ordem 0. Assim, em ambas as zonas, há mais de 22GiB de memória desfragmentável.

Comportamentos que não consigo explicar

Quando alocações de alta ordem falham, entendo que a compactação de memória é sempre tentada para permitir que regiões de alocação de memória de alta ordem ocorram e sejam bem-sucedidas. Por que isso não acontece? Se isso acontecer, por que não pode encontrar alguma memória para desfragmentar quando houver 22GiB de tamanho para reordenar?

Comportamentos que eu acho que posso explicar

Isso precisa de mais pesquisas para entender corretamente, mas acredito que a capacidade da alocação para trocar / soltar automaticamente alguns pagecache para o sucesso provavelmente não se aplica aqui, pois há muita memória livre ainda disponível, portanto, nenhuma recuperação ocorrerá. Apenas não é suficiente nas ordens superiores.

Enquanto há muita memória livre e alguns pedidos de ordem 4 deixados em cada zona, o problema "total de memória livre para cada pedido e dedução da memória livre real" resulta em um 'livre memória 'abaixo da marca d'água' min 'que é o que leva à falha real de alocação.

    
por 08.11.2014 / 03:01