Procure ativar o Log de consulta e o Slow Log de consultas .
Quais ferramentas existem para o perfil do MySQL, como o MSSQL 2000+ faz com o SQL Profiler?
Eu gostaria de rastrear coisas como instruções SQL executadas, tempos de execução, plano de execução, etc.
Procure ativar o Log de consulta e o Slow Log de consultas .
se você tiver o log de consultas ativado em seu ambiente de produção / teste [o que não é necessário, caso] você pode usar mk-query-digest do kit de ferramentas maatkit . isso ajudará você a determinar quais consultas são mais frequentes / demoradas, etc.
Outra opção comercial é o MySQL Query Analyzer , que faz parte do MySQL Enterprise Monitor. Descobri que é moderadamente útil para ajudar a criar perfis de consultas excêntricas para descobrir maneiras de melhorar seu desempenho.
Você também pode conferir o MySQLTuner
Aqui está um artigo bom sobre o profiler do MySQL. Embora dê uma olhada no explique declaração.
Eu uso este pequeno script. Sempre foi útil para mim, embora não seja nada oficial.
Eu usei vários scripts e outras ferramentas que são ótimas, mas achei o Jet Profiler muito bom para dar monitoramento em tempo real e visualização do que está acontecendo e como as coisas estão mudando. A versão completa custa dinheiro, mas a versão gratuita restrita também é útil e dá uma boa idéia do que a pessoa completa pode fazer.
Veja: link Funciona para mim, não é um criador de perfil de proxy
Eu recomendo o seguinte
Da antiga documentação do MAATKIT
Column Meaning
============ ==========================================================
Rank The query's rank within the entire set of queries analyzed
Query ID The query's fingerprint
Response time The total response time, and percentage of overall total
Calls The number of times this query was executed
R/Call The mean response time per execution
Apdx The Apdex score; see --apdex-threshold for details
V/M The Variance-to-mean ratio of response time
EXPLAIN If --explain was specified, a sparkline; see --explain
Item The distilled query
No DBA StackExchange, eu respondi efeitos de desempenho do log de consultas gerais do MySQL . Na minha postagem antiga, sugeri usar o mk-query-digest em vez do log geral ou log lento. A partir desse post, aqui está o exemplo de saída do perfil da consulta feito por mk-query-digest:
# Rank Query ID Response time Calls R/Call Item
# ==== ================== ================ ======= ========== ====
# 1 0x812D15015AD29D33 336.3867 68.5% 910 0.369656 SELECT mt_entry mt_placement mt_category
# 2 0x99E13015BFF1E75E 25.3594 5.2% 210 0.120759 SELECT mt_entry mt_objecttag
# 3 0x5E994008E9543B29 16.1608 3.3% 46 0.351321 SELECT schedule_occurrence schedule_eventschedule schedule_event schedule_eventtype schedule_event schedule_eventtype schedule_occurrence.start
# 4 0x84DD09F0FC444677 13.3070 2.7% 23 0.578567 SELECT mt_entry
# 5 0x377E0D0898266FDD 12.0870 2.5% 116 0.104199 SELECT polls_pollquestion mt_category
# 6 0x440EBDBCEDB88725 11.5159 2.3% 21 0.548376 SELECT mt_entry
# 7 0x1DC2DFD6B658021F 10.3653 2.1% 54 0.191949 SELECT mt_entry mt_placement mt_category
# 8 0x6C6318E56E149036 8.8294 1.8% 44 0.200667 SELECT schedule_occurrence schedule_eventschedule schedule_event schedule_eventtype schedule_event schedule_eventtype schedule_occurrence.start
# 9 0x392F6DA628C7FEBD 8.5243 1.7% 9 0.947143 SELECT mt_entry mt_objecttag
# 10 0x7DD2B294CFF96961 7.3753 1.5% 70 0.105362 SELECT polls_pollresponse
# 11 0x9B9092194D3910E6 5.8124 1.2% 57 0.101973 SELECT content_specialitem content_basecontentitem advertising_product organizations_neworg content_basecontentitem_item_attributes
# 12 0xA909BF76E7051792 5.6005 1.1% 55 0.101828 SELECT mt_entry mt_objecttag mt_tag
# 13 0xEBE07AC48DB8923E 5.5195 1.1% 54 0.102213 SELECT rssfeeds_contentfeeditem
# 14 0x3E52CF0261A7C3FF 4.4676 0.9% 44 0.101536 SELECT schedule_occurrence schedule_occurrence.start
# 15 0x9D0BCD3F6731195B 4.2804 0.9% 41 0.104401 SELECT mt_entry mt_placement mt_category
# 16 0x7961BD4C76277EB7 4.0143 0.8% 18 0.223014 INSERT UNION UPDATE UNION mt_session
# 17 0xD2F486BA41E7A623 3.1448 0.6% 21 0.149754 SELECT mt_entry mt_placement mt_category mt_objecttag mt_tag
# 18 0x3B9686D98BB8E054 2.9577 0.6% 11 0.268885 SELECT mt_entry mt_objecttag mt_tag
# 19 0xBB2443BF48638319 2.7239 0.6% 9 0.302660 SELECT rssfeeds_contentfeeditem
# 20 0x3D533D57D8B466CC 2.4209 0.5% 15 0.161391 SELECT mt_entry mt_placement mt_category
Acima desta saída estão histogramas dessas 20 consultas de pior desempenho
Exemplo do histograma da primeira entrada
# Query 1: 0.77 QPS, 0.28x concurrency, ID 0x812D15015AD29D33 at byte 0 __
# This item is included in the report because it matches --limit.
# pct total min max avg 95% stddev median
# Count 36 910
# Exec time 58 336s 101ms 2s 370ms 992ms 230ms 393ms
# Lock time 0 0 0 0 0 0 0 0
# Users 1 mt
# Hosts 905 10.64.95.74:54707 (2), 10.64.95.74:56133 (2), 10.64.95.80:33862 (2)... 901 more
# Databases 1 mt1
# Time range 1321642802 to 1321643988
# bytes 1 1.11M 1.22k 1.41k 1.25k 1.26k 25.66 1.20k
# id 36 9.87G 11.10M 11.11M 11.11M 10.76M 0.12 10.76M
# Query_time distribution
# 1us
# 10us
# 100us
# 1ms
# 10ms
# 100ms ################################################################
# 1s ###
# 10s+
# Tables
# SHOW TABLE STATUS FROM 'mt1' LIKE 'mt_entry'\G
# SHOW CREATE TABLE 'mt1'.'mt_entry'\G
# SHOW TABLE STATUS FROM 'mt1' LIKE 'mt_placement'\G
# SHOW CREATE TABLE 'mt1'.'mt_placement'\G
# SHOW TABLE STATUS FROM 'mt1' LIKE 'mt_category'\G
# SHOW CREATE TABLE 'mt1'.'mt_category'\G
# EXPLAIN
SELECT 'mt_entry'.'entry_id', 'mt_entry'.'entry_allow_comments', 'mt_entry'.'entry_allow_pings', 'mt_entry'.'entry_atom_id', 'mt_entry'.'entry_author_id', 'mt_entry'.'entry_authored_on', 'mt_entry'.'entry_basename', 'mt_entry'.'entry_blog_id', 'mt_entry'.'entry_category_id', 'mt_entry'.'entry_class', 'mt_entry'.'entry_comment_count', 'mt_entry'.'entry_convert_breaks', 'mt_entry'.'entry_created_by', 'mt_entry'.'entry_created_on', 'mt_entry'.'entry_excerpt', 'mt_entry'.'entry_keywords', 'mt_entry'.'entry_modified_by', 'mt_entry'.'entry_modified_on', 'mt_entry'.'entry_ping_count', 'mt_entry'.'entry_pinged_urls', 'mt_entry'.'entry_status', 'mt_entry'.'entry_tangent_cache', 'mt_entry'.'entry_template_id', 'mt_entry'.'entry_text', 'mt_entry'.'entry_text_more', 'mt_entry'.'entry_title', 'mt_entry'.'entry_to_ping_urls', 'mt_entry'.'entry_week_number' FROM 'mt_entry' INNER JOIN 'mt_placement' ON ('mt_entry'.'entry_id' = 'mt_placement'.'placement_entry_id') INNER JOIN 'mt_category' ON ('mt_placement'.'placement_category_id' = 'mt_category'.'category_id') WHERE ('mt_entry'.'entry_status' = 2 AND 'mt_category'.'category_basename' IN ('business_review' /*... omitted 3 items ...*/ ) AND NOT ('mt_entry'.'entry_id' IN (53441))) ORDER BY 'mt_entry'.'entry_authored_on' DESC LIMIT 4\G
Tags performance mysql