Se você quiser usar grep
, você pode fazer:
grep -axv '.*' file
nas localidades UTF-8 para obter as linhas que têm pelo menos uma seqüência UTF-8 inválida (isso funciona com o GNU Grep, pelo menos).
Eu tenho um arquivo de texto em uma codificação desconhecida ou mista. Eu quero ver as linhas que contêm uma seqüência de bytes que não é válida UTF-8 (canalizando o arquivo de texto em algum programa). Equivalentemente, eu quero filtrar as linhas que são válidas UTF-8. Em outras palavras, estou procurando grep [notutf8]
.
Uma solução ideal seria portátil, curta e generalizável para outras codificações, mas se você achar que a melhor maneira é assar na definição de UTF-8 , vá em frente.
Eu acho que você provavelmente quer iconv . É para converter entre conjuntos de códigos e suporta um número absurdo de formatos. Por exemplo, para remover qualquer coisa que não seja válida em UTF-8, você pode usar:
iconv -c -t UTF-8 < input.txt > output.txt
Sem a opção -c, ele relatará problemas na conversão para stderr, portanto, com a direção do processo, você pode salvar uma lista deles. Outra maneira seria tirar as coisas que não são UTF8 e, em seguida,
diff input.txt output.txt
para uma lista de onde as alterações foram feitas.
Editar: Eu consertei um erro de digitação no regex. Ele precisava de um '\ x80' não \ 80 .
O regex para filtrar os formulários UTF-8 inválidos, para a adesão estrita ao UTF-8, é o seguinte
perl -l -ne '/
^( ([\x00-\x7F]) # 1-byte pattern
|([\xC2-\xDF][\x80-\xBF]) # 2-byte pattern
|((([\xE0][\xA0-\xBF])|([\xED][\x80-\x9F])|([\xE1-\xEC\xEE-\xEF][\x80-\xBF]))([\x80-\xBF])) # 3-byte pattern
|((([\xF0][\x90-\xBF])|([\xF1-\xF3][\x80-\xBF])|([\xF4][\x80-\x8F]))([\x80-\xBF]{2})) # 4-byte pattern
)*$ /x or print'
Saída (das linhas principais do Teste 1 ):
Codepoint
=========
00001000 Test=1 mode=strict valid,invalid,fail=(1000,0,0)
0000E000 Test=1 mode=strict valid,invalid,fail=(D800,800,0)
0010FFFF mode=strict test-return=(0,0) valid,invalid,fail=(10F800,800,0)
Q. Como criar dados de teste para testar uma regex que filtra Unicode inválido?
A. Crie seu próprio algoritmo de teste UTF-8 e quebre suas regras ...
Catch-22 .. Mas então, como você testa seu algoritmo de teste?
O regex, acima, foi testado (usando iconv
como referência) para todo valor inteiro de 0x00000
a 0x10FFFF
. Esse valor superior é o o valor inteiro máximo de um Codepoint Unicode
De acordo com esta página da wikipedia UTF-8 .
Esse numeber (1,112,064) equivale a um intervalo 0x000000
a 0x10F7FF
, que é 0x0800 tímido do valor inteiro máximo real para o ponto de código Unicode mais alto: 0x10FFFF
Este bloco de inteiros está faltando no espectro Unicode Codepoints, devido à necessidade de a codificação UTF-16 ir além de sua intenção de design original através de um sistema chamado pares substitutos . Um bloco de 0x0800
inteiros foi reservado para ser usado pelo UTF-16 .. Esse bloco abrange o intervalo 0x00D800
to 0x00DFFF
. Nenhuma dessas inteters são valores Unicode legais e, portanto, são valores UTF-8 inválidos.
No Teste 1 , o regex
foi testado em cada número no intervalo de Pontos de código Unicode e corresponde exatamente aos resultados de iconv
. 0x010F7FF valores válidos e 0x000800 valores inválidos.
No entanto, o problema surge agora, * Como o regex manipula Out-Of-Range UTF-8 Value; acima de 0x010FFFF
(o UTF-8 pode ser estendido para 6 bytes, com um valor inteiro máximo de 0x7FFFFFFF ?
Para gerar os valores necessários * de byte UTF-8 não-unicode , usei o seguinte comando:
perl -C -e 'print chr 0x'$hexUTF32BE
Para testar sua validade (de alguma forma), usei o Gilles'
UTF-8 regex ...
perl -l -ne '/
^( [[[ "$(locale charmap)" != "UTF-8" ]] && { echo "ERROR: locale must be UTF-8, but it is $(locale charmap)"; exit 1; }
# Testing the UTF-8 regex
#
# Tests to check that the observed byte-ranges (above) have
# been accurately observed and included in the test code and final regex.
# =========================================================================
: 2 bytes; B2=0 # run-test=1 do-not-test=0
: 3 bytes; B3=0 # run-test=1 do-not-test=0
: 4 bytes; B4=0 # run-test=1 do-not-test=0
: regex; Rx=1 # run-test=1 do-not-test=0
((strict=16)); mode[$strict]=strict # iconv -f UTF-16BE then iconv -f UTF-32BE beyond 0xFFFF)
(( lax=32)); mode[$lax]=lax # iconv -f UTF-32BE only)
# modebits=$strict
# UTF-8, in relation to UTF-16 has invalid values
# modebits=$strict automatically shifts to modebits=$lax
# when the tested integer exceeds 0xFFFF
# modebits=$lax
# UTF-8, in relation to UTF-32, has no restrictione
# Test 1 Sequentially tests a range of Big-Endian integers
# * Unicode Codepoints are a subset ofBig-Endian integers
# ( based on 'iconv' -f UTF-32BE -f UTF-8 )
# Note: strict UTF-8 has a few quirks because of UTF-16
# Set modebits=16 to "strictly" test the low range
Test=1; modebits=$strict
# Test=2; modebits=$lax
# Test=3
mode3wlo=$(( 1*4)) # minimum chars * 4 ( '4' is for UTF-32BE )
mode3whi=$((10*4)) # minimum chars * 4 ( '4' is for UTF-32BE )
#########################################################################
# 1 byte UTF-8 values: Nothing to do; no complexities.
#########################################################################
# 2 Byte UTF-8 values: Verifying that I've got the right range values.
if ((B2==1)) ; then
echo "# Test 2 bytes for Valid UTF-8 values: ie. values which are in range"
# =========================================================================
time \
for d1 in {194..223} ;do
# bin oct hex dec
# lo 11000010 302 C2 194
# hi 11011111 337 DF 223
B2b1=$(printf "%0.2X" $d1)
#
for d2 in {128..191} ;do
# bin oct hex dec
# lo 10000000 200 80 128
# hi 10111111 277 BF 191
B2b2=$(printf "%0.2X" $d2)
#
echo -n "${B2b1}${B2b2}" |
xxd -p -u -r |
iconv -f UTF-8 >/dev/null || {
echo "ERROR: Invalid UTF-8 found: ${B2b1}${B2b2}"; exit 20; }
#
done
done
echo
# Now do a negated test.. This takes longer, because there are more values.
echo "# Test 2 bytes for Invalid values: ie. values which are out of range"
# =========================================================================
# Note: 'iconv' will treat a leading \x00-\x7F as a valid leading single,
# so this negated test primes the first UTF-8 byte with values starting at \x80
time \
for d1 in {128..193} {224..255} ;do
#for d1 in {128..194} {224..255} ;do # force a valid UTF-8 (needs $B2b2)
B2b1=$(printf "%0.2X" $d1)
#
for d2 in {0..127} {192..255} ;do
#for d2 in {0..128} {192..255} ;do # force a valid UTF-8 (needs $B2b1)
B2b2=$(printf "%0.2X" $d2)
#
echo -n "${B2b1}${B2b2}" |
xxd -p -u -r |
iconv -f UTF-8 2>/dev/null && {
echo "ERROR: VALID UTF-8 found: ${B2b1}${B2b2}"; exit 21; }
#
done
done
echo
fi
#########################################################################
# 3 Byte UTF-8 values: Verifying that I've got the right range values.
if ((B3==1)) ; then
echo "# Test 3 bytes for Valid UTF-8 values: ie. values which are in range"
# ========================================================================
time \
for d1 in {224..239} ;do
# bin oct hex dec
# lo 11100000 340 E0 224
# hi 11101111 357 EF 239
B3b1=$(printf "%0.2X" $d1)
#
if [[ $B3b1 == "E0" ]] ; then
B3b2range="$(echo {160..191})"
# bin oct hex dec
# lo 10100000 240 A0 160
# hi 10111111 277 BF 191
elif [[ $B3b1 == "ED" ]] ; then
B3b2range="$(echo {128..159})"
# bin oct hex dec
# lo 10000000 200 80 128
# hi 10011111 237 9F 159
else
B3b2range="$(echo {128..191})"
# bin oct hex dec
# lo 10000000 200 80 128
# hi 10111111 277 BF 191
fi
#
for d2 in $B3b2range ;do
B3b2=$(printf "%0.2X" $d2)
echo "${B3b1} ${B3b2} xx"
#
for d3 in {128..191} ;do
# bin oct hex dec
# lo 10000000 200 80 128
# hi 10111111 277 BF 191
B3b3=$(printf "%0.2X" $d3)
#
echo -n "${B3b1}${B3b2}${B3b3}" |
xxd -p -u -r |
iconv -f UTF-8 >/dev/null || {
echo "ERROR: Invalid UTF-8 found: ${B3b1}${B3b2}${B3b3}"; exit 30; }
#
done
done
done
echo
# Now do a negated test.. This takes longer, because there are more values.
echo "# Test 3 bytes for Invalid values: ie. values which are out of range"
# =========================================================================
# Note: 'iconv' will treat a leading \x00-\x7F as a valid leading single,
# so this negated test primes the first UTF-8 byte with values starting at \x80
#
# real 26m28.462s \
# user 27m12.526s | stepping by 2
# sys 13m11.193s /
#
# real 239m00.836s \
# user 225m11.108s | stepping by 1
# sys 120m00.538s /
#
time \
for d1 in {128..223..1} {240..255..1} ;do
#for d1 in {128..224..1} {239..255..1} ;do # force a valid UTF-8 (needs $B2b2,$B3b3)
B3b1=$(printf "%0.2X" $d1)
#
if [[ $B3b1 == "E0" ]] ; then
B3b2range="$(echo {0..159..1} {192..255..1})"
#B3b2range="$(> {192..255..1})" # force a valid UTF-8 (needs $B3b1,$B3b3)
elif [[ $B3b1 == "ED" ]] ; then
B3b2range="$(echo {0..127..1} {160..255..1})"
#B3b2range="$(echo {0..128..1} {160..255..1})" # force a valid UTF-8 (needs $B3b1,$B3b3)
else
B3b2range="$(echo {0..127..1} {192..255..1})"
#B3b2range="$(echo {0..128..1} {192..255..1})" # force a valid UTF-8 (needs $B3b1,$B3b3)
fi
for d2 in $B3b2range ;do
B3b2=$(printf "%0.2X" $d2)
echo "${B3b1} ${B3b2} xx"
#
for d3 in {0..127..1} {192..255..1} ;do
#for d3 in {0..128..1} {192..255..1} ;do # force a valid UTF-8 (needs $B2b1)
B3b3=$(printf "%0.2X" $d3)
#
echo -n "${B3b1}${B3b2}${B3b3}" |
xxd -p -u -r |
iconv -f UTF-8 2>/dev/null && {
echo "ERROR: VALID UTF-8 found: ${B3b1}${B3b2}${B3b3}"; exit 31; }
#
done
done
done
echo
fi
#########################################################################
# Brute force testing in the Astral Plane will take a VERY LONG time..
# Perhaps selective testing is more appropriate, now that the previous tests
# have panned out okay...
#
# 4 Byte UTF-8 values:
if ((B4==1)) ; then
echo "# Test 4 bytes for Valid UTF-8 values: ie. values which are in range"
# ==================================================================
# real 58m18.531s \
# user 56m44.317s |
# sys 27m29.867s /
time \
for d1 in {240..244} ;do
# bin oct hex dec
# lo 11110000 360 F0 240
# hi 11110100 364 F4 244 -- F4 encodes some values greater than 0x10FFFF;
# such a sequence is invalid.
B4b1=$(printf "%0.2X" $d1)
#
if [[ $B4b1 == "F0" ]] ; then
B4b2range="$(echo {144..191})" ## f0 90 80 80 to f0 bf bf bf
# bin oct hex dec 010000 -- 03FFFF
# lo 10010000 220 90 144
# hi 10111111 277 BF 191
#
elif [[ $B4b1 == "F4" ]] ; then
B4b2range="$(echo {128..143})" ## f4 80 80 80 to f4 8f bf bf
# bin oct hex dec 100000 -- 10FFFF
# lo 10000000 200 80 128
# hi 10001111 217 8F 143 -- F4 encodes some values greater than 0x10FFFF;
# such a sequence is invalid.
else
B4b2range="$(echo {128..191})" ## fx 80 80 80 to f3 bf bf bf
# bin oct hex dec 0C0000 -- 0FFFFF
# lo 10000000 200 80 128 0A0000
# hi 10111111 277 BF 191
fi
#
for d2 in $B4b2range ;do
B4b2=$(printf "%0.2X" $d2)
#
for d3 in {128..191} ;do
# bin oct hex dec
# lo 10000000 200 80 128
# hi 10111111 277 BF 191
B4b3=$(printf "%0.2X" $d3)
echo "${B4b1} ${B4b2} ${B4b3} xx"
#
for d4 in {128..191} ;do
# bin oct hex dec
# lo 10000000 200 80 128
# hi 10111111 277 BF 191
B4b4=$(printf "%0.2X" $d4)
#
echo -n "${B4b1}${B4b2}${B4b3}${B4b4}" |
xxd -p -u -r |
iconv -f UTF-8 >/dev/null || {
echo "ERROR: Invalid UTF-8 found: ${B4b1}${B4b2}${B4b3}${B4b4}"; exit 40; }
#
done
done
done
done
echo "# Test 4 bytes for Valid UTF-8 values: END"
echo
fi
########################################################################
# There is no test (yet) for negated range values in the astral plane. #
# (all negated range values must be invalid) #
# I won't bother; This was mainly for me to ge the general feel of #
# the tests, and the final test below should flush anything out.. #
# Traversing the intire UTF-8 range takes quite a while... #
# so no need to do it twice (albeit in a slightly different manner) #
########################################################################
################################
### The construction of: ####
### The Regular Expression ####
### (de-construction?) ####
################################
# BYTE 1 BYTE 2 BYTE 3 BYTE 4
# 1: [\x00-\x7F]
# ===========
# ([\x00-\x7F])
#
# 2: [\xC2-\xDF] [\x80-\xBF]
# =================================
# ([\xC2-\xDF][\x80-\xBF])
#
# 3: [\xE0] [\xA0-\xBF] [\x80-\xBF]
# [\xED] [\x80-\x9F] [\x80-\xBF]
# [\xE1-\xEC\xEE-\xEF] [\x80-\xBF] [\x80-\xBF]
# ==============================================
# ((([\xE0][\xA0-\xBF])|([\xED][\x80-\x9F])|([\xE1-\xEC\xEE-\xEF][\x80-\xBF]))([\x80-\xBF]))
#
# 4 [\xF0] [\x90-\xBF] [\x80-\xBF] [\x80-\xBF]
# [\xF1-\xF3] [\x80-\xBF] [\x80-\xBF] [\x80-\xBF]
# [\xF4] [\x80-\x8F] [\x80-\xBF] [\x80-\xBF]
# ===========================================================
# ((([\xF0][\x90-\xBF])|([\xF1-\xF3][\x80-\xBF])|([\xF4][\x80-\x8F]))([\x80-\xBF]{2}))
#
# The final regex
# ===============
# 1-4: (([\x00-\x7F])|([\xC2-\xDF][\x80-\xBF])|((([\xE0][\xA0-\xBF])|([\xED][\x80-\x9F])|([\xE1-\xEC\xEE-\xEF][\x80-\xBF]))([\x80-\xBF]))|((([\xF0][\x90-\xBF])|([\xF1-\xF3][\x80-\xBF])|([\xF4][\x80-\x8F]))([\x80-\xBF]{2})))
# 4-1: (((([\xF0][\x90-\xBF])|([\xF1-\xF3][\x80-\xBF])|([\xF4][\x80-\x8F]))([\x80-\xBF]{2}))|((([\xE0][\xA0-\xBF])|([\xED][\x80-\x9F])|([\xE1-\xEC\xEE-\xEF][\x80-\xBF]))([\x80-\xBF]))|([\xC2-\xDF][\x80-\xBF])|([\x00-\x7F]))
#######################################################################
# The final Test; for a single character (multi chars to follow) #
# Compare the return code of 'iconv' against the 'regex' #
# for the full range of 0x000000 to 0x10FFFF #
# #
# Note; this script has 3 modes: #
# Run this test TWICE, set each mode Manually! #
# #
# 1. Sequentially test every value from 0x000000 to 0x10FFFF #
# 2. Throw a spanner into the works! Force random byte patterns #
# 2. Throw a spanner into the works! Force random longer strings #
# ============================== #
# #
# Note: The purpose of this routine is to determine if there is any #
# difference how 'iconv' and 'regex' handle the same data #
# #
#######################################################################
if ((Rx==1)) ; then
# real 191m34.826s
# user 158m24.114s
# sys 83m10.676s
time {
invalCt=0
validCt=0
failCt=0
decBeg=$((0x00110000)) # incement by decimal integer
decMax=$((0x7FFFFFFF)) # incement by decimal integer
#
for ((CPDec=decBeg;CPDec<=decMax;CPDec+=13247)) ;do
((D==1)) && echo "=========================================================="
#
# Convert decimal integer '$CPDec' to Hex-digits; 6-long (dec2hex)
hexUTF32BE=$(printf '%0.8X\n' $CPDec) # hexUTF32BE
# progress count
if (((CPDec%$((0x1000)))==0)) ;then
((Test>2)) && echo
echo "$hexUTF32BE Test=$Test mode=${mode[$modebits]} "
fi
if ((Test==1 || Test==2 ))
then # Test 1. Sequentially test every value from 0x000000 to 0x10FFFF
#
if ((Test==2)) ; then
bits=32
UTF8="$( perl -C -e 'print chr 0x'$hexUTF32BE |
perl -l -ne '/^( [perl -l -ne '/
^( ([\x00-\x7F]) # 1-byte pattern
|([\xC2-\xDF][\x80-\xBF]) # 2-byte pattern
|((([\xE0][\xA0-\xBF])|([\xED][\x80-\x9F])|([\xE1-\xEC\xEE-\xEF][\x80-\xBF]))([\x80-\xBF])) # 3-byte pattern
|((([\xF0][\x90-\xBF])|([\xF1-\xF3][\x80-\xBF])|([\xF4][\x80-\x8F]))([\x80-\xBF]{2})) # 4-byte pattern
)*$ /x or print'
0-7]
| [0-7][0-7]
| [0-7][0-7]{2}
| [0-7][0-7]{3}
| [0-3][0-7]{4}
| [4-5][0-7]{5}
)*$/x and print' |xxd -p )"
UTF8="${UTF8%0a}"
[[ -n "$UTF8" ]] \
&& rcIco32=0 || rcIco32=1
rcIco16=
elif ((modebits==strict && CPDec<=$((0xFFFF)))) ;then
bits=16
UTF8="$( echo -n "${hexUTF32BE:4}" |
xxd -p -u -r |
iconv -f UTF-16BE -t UTF-8 2>/dev/null)" \
&& rcIco16=0 || rcIco16=1
rcIco32=
else
bits=32
UTF8="$( echo -n "$hexUTF32BE" |
xxd -p -u -r |
iconv -f UTF-32BE -t UTF-8 2>/dev/null)" \
&& rcIco32=0 || rcIco32=1
rcIco16=
fi
# echo "1 mode=${mode[$modebits]}-$bits rcIconv: (${rcIco16},${rcIco32}) $hexUTF32BE "
#
#
#
if ((${rcIco16}${rcIco32}!=0)) ;then
# 'iconv -f UTF-16BE' failed produce a reliable UTF-8
if ((bits==16)) ;then
((D==1)) && echo "bits-$bits rcIconv: error $hexUTF32BE .. 'strict' failed, now trying 'lax'"
# iconv failed to create a 'srict' UTF-8 so
# try UTF-32BE to get a 'lax' UTF-8 pattern
UTF8="$( echo -n "$hexUTF32BE" |
xxd -p -u -r |
iconv -f UTF-32BE -t UTF-8 2>/dev/null)" \
&& rcIco32=0 || rcIco32=1
#echo "2 mode=${mode[$modebits]}-$bits rcIconv: (${rcIco16},${rcIco32}) $hexUTF32BE "
if ((rcIco32!=0)) ;then
((D==1)) && echo -n "bits-$bits rcIconv: Cannot gen UTF-8 for: $hexUTF32BE"
rcIco32=1
fi
fi
fi
# echo "3 mode=${mode[$modebits]}-$bits rcIconv: (${rcIco16},${rcIco32}) $hexUTF32BE "
#
#
#
if ((rcIco16==0 || rcIco32==0)) ;then
# 'strict(16)' OR 'lax(32)'... 'iconv' managed to generate a UTF-8 pattern
((D==1)) && echo -n "bits-$bits rcIconv: pattern* $hexUTF32BE"
((D==1)) && if [[ $bits == "16" && $rcIco32 == "0" ]] ;then
echo " .. 'lax' UTF-8 produced a pattern"
else
echo
fi
# regex test
if ((modebits==strict)) ;then
#rxOut="$(echo -n "$UTF8" |perl -l -ne '/^(([\x00-\x7F])|([\xC2-\xDF][\x80-\xBF])|((([\xE0][\xA0-\xBF])|([\xED][\x80-\x9F])|([\xE1-\xEC\xEE-\xEF][\x80-\xBF]))([\x80-\xBF]))|((([\xF0][\x90-\xBF])|([\xF1-\xF3][\x80-\xBF])|([\xF4][\x80-\x8F]))([\x80-\xBF]{2})))*$/ or print' )"
rxOut="$(echo -n "$UTF8" |
perl -l -ne '/^( ([\x00-\x7F]) # 1-byte pattern
|([\xC2-\xDF][\x80-\xBF]) # 2-byte pattern
|((([\xE0][\xA0-\xBF])|([\xED][\x80-\x9F])|([\xE1-\xEC\xEE-\xEF][\x80-\xBF]))([\x80-\xBF])) # 3-byte pattern
|((([\xF0][\x90-\xBF])|([\xF1-\xF3][\x80-\xBF])|([\xF4][\x80-\x8F]))([\x80-\xBF]{2})) # 4-byte pattern
)*$ /x or print' )"
else
if ((Test==2)) ;then
rx="$(echo -n "$UTF8" |perl -l -ne '/^([Codepoint
=========
00001000 Test=1 mode=strict valid,invalid,fail=(1000,0,0)
0000E000 Test=1 mode=strict valid,invalid,fail=(D800,800,0)
0010FFFF mode=strict test-return=(0,0) valid,invalid,fail=(10F800,800,0)
0-7]|[0-7][0-7]|[0-7][0-7]{2}|[0-7][0-7]{3}|[0-3][0-7]{4}|[4-5][0-7]{5})*$/ and print')"
[[ "$UTF8" != "$rx" ]] && rxOut="$UTF8" || rxOut=
rx="$(echo -n "$rx" |sed -e "s/\(..\)/ /g")"
else
rxOut="$(echo -n "$UTF8" |perl -l -ne '/^([ perl -C -e 'print chr 0x'$hexUTF32BE
0-7]|[0-7][0-7]|[0-7][0-7]{2}|[0-7][0-7]{3}|[0-3][0-7]{4}|[4-5][0-7]{5})*$/ or print' )"
fi
fi
if [[ "$rxOut" == "" ]] ;then
((D==1)) && echo " rcRegex: ok"
rcRegex=0
else
((D==1)) && echo -n "bits-$bits rcRegex: error $hexUTF32BE .. 'strict' failed,"
((D==1)) && if [[ "12" == *$Test* ]] ;then
echo # " (codepoint) Test $Test"
else
echo
fi
rcRegex=1
fi
fi
#
elif [[ $Test == 2 ]]
then # Test 2. Throw a randomizing spanner into the works!
# Then test the arbitary bytes ASIS
#
hexLineRand="$(echo -n "$hexUTF32BE" |
sed -re "s/(.)(.)(.)(.)(.)(.)(.)(.)/\n\n\n\n\n\n\n/" |
sort -R |
tr -d '\n')"
#
elif [[ $Test == 3 ]]
then # Test 3. Test single UTF-16BE bytes in the range 0x00000000 to 0x7FFFFFFF
#
echo "Test 3 is not properly implemented yet.. Exiting"
exit 99
else
echo "ERROR: Invalid mode"
exit
fi
#
#
if ((Test==1 || Test=2)) ;then
if ((modebits==strict && CPDec<=$((0xFFFF)))) ;then
((rcIconv=rcIco16))
else
((rcIconv=rcIco32))
fi
if ((rcRegex!=rcIconv)) ;then
[[ $Test != 1 ]] && echo
if ((rcRegex==1)) ;then
echo "ERROR: 'regex' ok, but NOT 'iconv': ${hexUTF32BE} "
else
echo "ERROR: 'iconv' ok, but NOT 'regex': ${hexUTF32BE} "
fi
((failCt++));
elif ((rcRegex!=0)) ;then
# ((invalCt++)); echo -ne "$hexUTF32BE exit-codes $${rcIco16}${rcIco32}=,$rcRegex\t: $(printf "%0.8X\n" $invalCt)\t$hexLine$(printf "%$(((mode3whi*2)-${#hexLine}))s")\r"
((invalCt++))
else
((validCt++))
fi
if ((Test==1)) ;then
echo -ne "$hexUTF32BE " "mode=${mode[$modebits]} test-return=($rcIconv,$rcRegex) valid,invalid,fail=($(printf "%X" $validCt),$(printf "%X" $invalCt),$(printf "%X" $failCt)) \r"
else
echo -ne "$hexUTF32BE $rx mode=${mode[$modebits]} test-return=($rcIconv,$rcRegex) val,inval,fail=($(printf "%X" $validCt),$(printf "%X" $invalCt),$(printf "%X" $failCt))\r"
fi
fi
done
} # End time
fi
exit
0-7] # 1-byte pattern
|[0-7][0-7] # 2-byte pattern
|[0-7][0-7]{2} # 3-byte pattern
|[0-7][0-7]{3} # 4-byte pattern
|[0-3][0-7]{4} # 5-byte pattern
|[4-5][0-7]{5} # 6-byte pattern
)*$ /x or print'
A saída de 'perl's print chr' coincide com a filtragem do regex de Gilles. Um reforça a validade do outro.
Eu não posso usar iconv
porque ele só lida com o subconjunto Padrão Unicode válido do padrão UTF-8 (original) mais amplo ...
Os nunbers envolvidos são bastante grandes, então eu testei as varreduras de topo de gama, de baixo de gama e várias varreduras por incrementos como 11111, 13579, 33333, 53441 ... Os resultados combinam Portanto, tudo o que resta é testar o regex contra esses valores fora do intervalo de estilo UTF-8 (inválido para Unicode e, portanto, também inválido para o próprio UTF-8 estrito).
Aqui estão os módulos de teste:
perl -l -ne '/
^( [[[ "$(locale charmap)" != "UTF-8" ]] && { echo "ERROR: locale must be UTF-8, but it is $(locale charmap)"; exit 1; }
# Testing the UTF-8 regex
#
# Tests to check that the observed byte-ranges (above) have
# been accurately observed and included in the test code and final regex.
# =========================================================================
: 2 bytes; B2=0 # run-test=1 do-not-test=0
: 3 bytes; B3=0 # run-test=1 do-not-test=0
: 4 bytes; B4=0 # run-test=1 do-not-test=0
: regex; Rx=1 # run-test=1 do-not-test=0
((strict=16)); mode[$strict]=strict # iconv -f UTF-16BE then iconv -f UTF-32BE beyond 0xFFFF)
(( lax=32)); mode[$lax]=lax # iconv -f UTF-32BE only)
# modebits=$strict
# UTF-8, in relation to UTF-16 has invalid values
# modebits=$strict automatically shifts to modebits=$lax
# when the tested integer exceeds 0xFFFF
# modebits=$lax
# UTF-8, in relation to UTF-32, has no restrictione
# Test 1 Sequentially tests a range of Big-Endian integers
# * Unicode Codepoints are a subset ofBig-Endian integers
# ( based on 'iconv' -f UTF-32BE -f UTF-8 )
# Note: strict UTF-8 has a few quirks because of UTF-16
# Set modebits=16 to "strictly" test the low range
Test=1; modebits=$strict
# Test=2; modebits=$lax
# Test=3
mode3wlo=$(( 1*4)) # minimum chars * 4 ( '4' is for UTF-32BE )
mode3whi=$((10*4)) # minimum chars * 4 ( '4' is for UTF-32BE )
#########################################################################
# 1 byte UTF-8 values: Nothing to do; no complexities.
#########################################################################
# 2 Byte UTF-8 values: Verifying that I've got the right range values.
if ((B2==1)) ; then
echo "# Test 2 bytes for Valid UTF-8 values: ie. values which are in range"
# =========================================================================
time \
for d1 in {194..223} ;do
# bin oct hex dec
# lo 11000010 302 C2 194
# hi 11011111 337 DF 223
B2b1=$(printf "%0.2X" $d1)
#
for d2 in {128..191} ;do
# bin oct hex dec
# lo 10000000 200 80 128
# hi 10111111 277 BF 191
B2b2=$(printf "%0.2X" $d2)
#
echo -n "${B2b1}${B2b2}" |
xxd -p -u -r |
iconv -f UTF-8 >/dev/null || {
echo "ERROR: Invalid UTF-8 found: ${B2b1}${B2b2}"; exit 20; }
#
done
done
echo
# Now do a negated test.. This takes longer, because there are more values.
echo "# Test 2 bytes for Invalid values: ie. values which are out of range"
# =========================================================================
# Note: 'iconv' will treat a leading \x00-\x7F as a valid leading single,
# so this negated test primes the first UTF-8 byte with values starting at \x80
time \
for d1 in {128..193} {224..255} ;do
#for d1 in {128..194} {224..255} ;do # force a valid UTF-8 (needs $B2b2)
B2b1=$(printf "%0.2X" $d1)
#
for d2 in {0..127} {192..255} ;do
#for d2 in {0..128} {192..255} ;do # force a valid UTF-8 (needs $B2b1)
B2b2=$(printf "%0.2X" $d2)
#
echo -n "${B2b1}${B2b2}" |
xxd -p -u -r |
iconv -f UTF-8 2>/dev/null && {
echo "ERROR: VALID UTF-8 found: ${B2b1}${B2b2}"; exit 21; }
#
done
done
echo
fi
#########################################################################
# 3 Byte UTF-8 values: Verifying that I've got the right range values.
if ((B3==1)) ; then
echo "# Test 3 bytes for Valid UTF-8 values: ie. values which are in range"
# ========================================================================
time \
for d1 in {224..239} ;do
# bin oct hex dec
# lo 11100000 340 E0 224
# hi 11101111 357 EF 239
B3b1=$(printf "%0.2X" $d1)
#
if [[ $B3b1 == "E0" ]] ; then
B3b2range="$(echo {160..191})"
# bin oct hex dec
# lo 10100000 240 A0 160
# hi 10111111 277 BF 191
elif [[ $B3b1 == "ED" ]] ; then
B3b2range="$(echo {128..159})"
# bin oct hex dec
# lo 10000000 200 80 128
# hi 10011111 237 9F 159
else
B3b2range="$(echo {128..191})"
# bin oct hex dec
# lo 10000000 200 80 128
# hi 10111111 277 BF 191
fi
#
for d2 in $B3b2range ;do
B3b2=$(printf "%0.2X" $d2)
echo "${B3b1} ${B3b2} xx"
#
for d3 in {128..191} ;do
# bin oct hex dec
# lo 10000000 200 80 128
# hi 10111111 277 BF 191
B3b3=$(printf "%0.2X" $d3)
#
echo -n "${B3b1}${B3b2}${B3b3}" |
xxd -p -u -r |
iconv -f UTF-8 >/dev/null || {
echo "ERROR: Invalid UTF-8 found: ${B3b1}${B3b2}${B3b3}"; exit 30; }
#
done
done
done
echo
# Now do a negated test.. This takes longer, because there are more values.
echo "# Test 3 bytes for Invalid values: ie. values which are out of range"
# =========================================================================
# Note: 'iconv' will treat a leading \x00-\x7F as a valid leading single,
# so this negated test primes the first UTF-8 byte with values starting at \x80
#
# real 26m28.462s \
# user 27m12.526s | stepping by 2
# sys 13m11.193s /
#
# real 239m00.836s \
# user 225m11.108s | stepping by 1
# sys 120m00.538s /
#
time \
for d1 in {128..223..1} {240..255..1} ;do
#for d1 in {128..224..1} {239..255..1} ;do # force a valid UTF-8 (needs $B2b2,$B3b3)
B3b1=$(printf "%0.2X" $d1)
#
if [[ $B3b1 == "E0" ]] ; then
B3b2range="$(echo {0..159..1} {192..255..1})"
#B3b2range="$(> {192..255..1})" # force a valid UTF-8 (needs $B3b1,$B3b3)
elif [[ $B3b1 == "ED" ]] ; then
B3b2range="$(echo {0..127..1} {160..255..1})"
#B3b2range="$(echo {0..128..1} {160..255..1})" # force a valid UTF-8 (needs $B3b1,$B3b3)
else
B3b2range="$(echo {0..127..1} {192..255..1})"
#B3b2range="$(echo {0..128..1} {192..255..1})" # force a valid UTF-8 (needs $B3b1,$B3b3)
fi
for d2 in $B3b2range ;do
B3b2=$(printf "%0.2X" $d2)
echo "${B3b1} ${B3b2} xx"
#
for d3 in {0..127..1} {192..255..1} ;do
#for d3 in {0..128..1} {192..255..1} ;do # force a valid UTF-8 (needs $B2b1)
B3b3=$(printf "%0.2X" $d3)
#
echo -n "${B3b1}${B3b2}${B3b3}" |
xxd -p -u -r |
iconv -f UTF-8 2>/dev/null && {
echo "ERROR: VALID UTF-8 found: ${B3b1}${B3b2}${B3b3}"; exit 31; }
#
done
done
done
echo
fi
#########################################################################
# Brute force testing in the Astral Plane will take a VERY LONG time..
# Perhaps selective testing is more appropriate, now that the previous tests
# have panned out okay...
#
# 4 Byte UTF-8 values:
if ((B4==1)) ; then
echo "# Test 4 bytes for Valid UTF-8 values: ie. values which are in range"
# ==================================================================
# real 58m18.531s \
# user 56m44.317s |
# sys 27m29.867s /
time \
for d1 in {240..244} ;do
# bin oct hex dec
# lo 11110000 360 F0 240
# hi 11110100 364 F4 244 -- F4 encodes some values greater than 0x10FFFF;
# such a sequence is invalid.
B4b1=$(printf "%0.2X" $d1)
#
if [[ $B4b1 == "F0" ]] ; then
B4b2range="$(echo {144..191})" ## f0 90 80 80 to f0 bf bf bf
# bin oct hex dec 010000 -- 03FFFF
# lo 10010000 220 90 144
# hi 10111111 277 BF 191
#
elif [[ $B4b1 == "F4" ]] ; then
B4b2range="$(echo {128..143})" ## f4 80 80 80 to f4 8f bf bf
# bin oct hex dec 100000 -- 10FFFF
# lo 10000000 200 80 128
# hi 10001111 217 8F 143 -- F4 encodes some values greater than 0x10FFFF;
# such a sequence is invalid.
else
B4b2range="$(echo {128..191})" ## fx 80 80 80 to f3 bf bf bf
# bin oct hex dec 0C0000 -- 0FFFFF
# lo 10000000 200 80 128 0A0000
# hi 10111111 277 BF 191
fi
#
for d2 in $B4b2range ;do
B4b2=$(printf "%0.2X" $d2)
#
for d3 in {128..191} ;do
# bin oct hex dec
# lo 10000000 200 80 128
# hi 10111111 277 BF 191
B4b3=$(printf "%0.2X" $d3)
echo "${B4b1} ${B4b2} ${B4b3} xx"
#
for d4 in {128..191} ;do
# bin oct hex dec
# lo 10000000 200 80 128
# hi 10111111 277 BF 191
B4b4=$(printf "%0.2X" $d4)
#
echo -n "${B4b1}${B4b2}${B4b3}${B4b4}" |
xxd -p -u -r |
iconv -f UTF-8 >/dev/null || {
echo "ERROR: Invalid UTF-8 found: ${B4b1}${B4b2}${B4b3}${B4b4}"; exit 40; }
#
done
done
done
done
echo "# Test 4 bytes for Valid UTF-8 values: END"
echo
fi
########################################################################
# There is no test (yet) for negated range values in the astral plane. #
# (all negated range values must be invalid) #
# I won't bother; This was mainly for me to ge the general feel of #
# the tests, and the final test below should flush anything out.. #
# Traversing the intire UTF-8 range takes quite a while... #
# so no need to do it twice (albeit in a slightly different manner) #
########################################################################
################################
### The construction of: ####
### The Regular Expression ####
### (de-construction?) ####
################################
# BYTE 1 BYTE 2 BYTE 3 BYTE 4
# 1: [\x00-\x7F]
# ===========
# ([\x00-\x7F])
#
# 2: [\xC2-\xDF] [\x80-\xBF]
# =================================
# ([\xC2-\xDF][\x80-\xBF])
#
# 3: [\xE0] [\xA0-\xBF] [\x80-\xBF]
# [\xED] [\x80-\x9F] [\x80-\xBF]
# [\xE1-\xEC\xEE-\xEF] [\x80-\xBF] [\x80-\xBF]
# ==============================================
# ((([\xE0][\xA0-\xBF])|([\xED][\x80-\x9F])|([\xE1-\xEC\xEE-\xEF][\x80-\xBF]))([\x80-\xBF]))
#
# 4 [\xF0] [\x90-\xBF] [\x80-\xBF] [\x80-\xBF]
# [\xF1-\xF3] [\x80-\xBF] [\x80-\xBF] [\x80-\xBF]
# [\xF4] [\x80-\x8F] [\x80-\xBF] [\x80-\xBF]
# ===========================================================
# ((([\xF0][\x90-\xBF])|([\xF1-\xF3][\x80-\xBF])|([\xF4][\x80-\x8F]))([\x80-\xBF]{2}))
#
# The final regex
# ===============
# 1-4: (([\x00-\x7F])|([\xC2-\xDF][\x80-\xBF])|((([\xE0][\xA0-\xBF])|([\xED][\x80-\x9F])|([\xE1-\xEC\xEE-\xEF][\x80-\xBF]))([\x80-\xBF]))|((([\xF0][\x90-\xBF])|([\xF1-\xF3][\x80-\xBF])|([\xF4][\x80-\x8F]))([\x80-\xBF]{2})))
# 4-1: (((([\xF0][\x90-\xBF])|([\xF1-\xF3][\x80-\xBF])|([\xF4][\x80-\x8F]))([\x80-\xBF]{2}))|((([\xE0][\xA0-\xBF])|([\xED][\x80-\x9F])|([\xE1-\xEC\xEE-\xEF][\x80-\xBF]))([\x80-\xBF]))|([\xC2-\xDF][\x80-\xBF])|([\x00-\x7F]))
#######################################################################
# The final Test; for a single character (multi chars to follow) #
# Compare the return code of 'iconv' against the 'regex' #
# for the full range of 0x000000 to 0x10FFFF #
# #
# Note; this script has 3 modes: #
# Run this test TWICE, set each mode Manually! #
# #
# 1. Sequentially test every value from 0x000000 to 0x10FFFF #
# 2. Throw a spanner into the works! Force random byte patterns #
# 2. Throw a spanner into the works! Force random longer strings #
# ============================== #
# #
# Note: The purpose of this routine is to determine if there is any #
# difference how 'iconv' and 'regex' handle the same data #
# #
#######################################################################
if ((Rx==1)) ; then
# real 191m34.826s
# user 158m24.114s
# sys 83m10.676s
time {
invalCt=0
validCt=0
failCt=0
decBeg=$((0x00110000)) # incement by decimal integer
decMax=$((0x7FFFFFFF)) # incement by decimal integer
#
for ((CPDec=decBeg;CPDec<=decMax;CPDec+=13247)) ;do
((D==1)) && echo "=========================================================="
#
# Convert decimal integer '$CPDec' to Hex-digits; 6-long (dec2hex)
hexUTF32BE=$(printf '%0.8X\n' $CPDec) # hexUTF32BE
# progress count
if (((CPDec%$((0x1000)))==0)) ;then
((Test>2)) && echo
echo "$hexUTF32BE Test=$Test mode=${mode[$modebits]} "
fi
if ((Test==1 || Test==2 ))
then # Test 1. Sequentially test every value from 0x000000 to 0x10FFFF
#
if ((Test==2)) ; then
bits=32
UTF8="$( perl -C -e 'print chr 0x'$hexUTF32BE |
perl -l -ne '/^( [%pre%0-7]
| [0-7][0-7]
| [0-7][0-7]{2}
| [0-7][0-7]{3}
| [0-3][0-7]{4}
| [4-5][0-7]{5}
)*$/x and print' |xxd -p )"
UTF8="${UTF8%0a}"
[[ -n "$UTF8" ]] \
&& rcIco32=0 || rcIco32=1
rcIco16=
elif ((modebits==strict && CPDec<=$((0xFFFF)))) ;then
bits=16
UTF8="$( echo -n "${hexUTF32BE:4}" |
xxd -p -u -r |
iconv -f UTF-16BE -t UTF-8 2>/dev/null)" \
&& rcIco16=0 || rcIco16=1
rcIco32=
else
bits=32
UTF8="$( echo -n "$hexUTF32BE" |
xxd -p -u -r |
iconv -f UTF-32BE -t UTF-8 2>/dev/null)" \
&& rcIco32=0 || rcIco32=1
rcIco16=
fi
# echo "1 mode=${mode[$modebits]}-$bits rcIconv: (${rcIco16},${rcIco32}) $hexUTF32BE "
#
#
#
if ((${rcIco16}${rcIco32}!=0)) ;then
# 'iconv -f UTF-16BE' failed produce a reliable UTF-8
if ((bits==16)) ;then
((D==1)) && echo "bits-$bits rcIconv: error $hexUTF32BE .. 'strict' failed, now trying 'lax'"
# iconv failed to create a 'srict' UTF-8 so
# try UTF-32BE to get a 'lax' UTF-8 pattern
UTF8="$( echo -n "$hexUTF32BE" |
xxd -p -u -r |
iconv -f UTF-32BE -t UTF-8 2>/dev/null)" \
&& rcIco32=0 || rcIco32=1
#echo "2 mode=${mode[$modebits]}-$bits rcIconv: (${rcIco16},${rcIco32}) $hexUTF32BE "
if ((rcIco32!=0)) ;then
((D==1)) && echo -n "bits-$bits rcIconv: Cannot gen UTF-8 for: $hexUTF32BE"
rcIco32=1
fi
fi
fi
# echo "3 mode=${mode[$modebits]}-$bits rcIconv: (${rcIco16},${rcIco32}) $hexUTF32BE "
#
#
#
if ((rcIco16==0 || rcIco32==0)) ;then
# 'strict(16)' OR 'lax(32)'... 'iconv' managed to generate a UTF-8 pattern
((D==1)) && echo -n "bits-$bits rcIconv: pattern* $hexUTF32BE"
((D==1)) && if [[ $bits == "16" && $rcIco32 == "0" ]] ;then
echo " .. 'lax' UTF-8 produced a pattern"
else
echo
fi
# regex test
if ((modebits==strict)) ;then
#rxOut="$(echo -n "$UTF8" |perl -l -ne '/^(([\x00-\x7F])|([\xC2-\xDF][\x80-\xBF])|((([\xE0][\xA0-\xBF])|([\xED][\x80-\x9F])|([\xE1-\xEC\xEE-\xEF][\x80-\xBF]))([\x80-\xBF]))|((([\xF0][\x90-\xBF])|([\xF1-\xF3][\x80-\xBF])|([\xF4][\x80-\x8F]))([\x80-\xBF]{2})))*$/ or print' )"
rxOut="$(echo -n "$UTF8" |
perl -l -ne '/^( ([\x00-\x7F]) # 1-byte pattern
|([\xC2-\xDF][\x80-\xBF]) # 2-byte pattern
|((([\xE0][\xA0-\xBF])|([\xED][\x80-\x9F])|([\xE1-\xEC\xEE-\xEF][\x80-\xBF]))([\x80-\xBF])) # 3-byte pattern
|((([\xF0][\x90-\xBF])|([\xF1-\xF3][\x80-\xBF])|([\xF4][\x80-\x8F]))([\x80-\xBF]{2})) # 4-byte pattern
)*$ /x or print' )"
else
if ((Test==2)) ;then
rx="$(echo -n "$UTF8" |perl -l -ne '/^([%pre%0-7]|[0-7][0-7]|[0-7][0-7]{2}|[0-7][0-7]{3}|[0-3][0-7]{4}|[4-5][0-7]{5})*$/ and print')"
[[ "$UTF8" != "$rx" ]] && rxOut="$UTF8" || rxOut=
rx="$(echo -n "$rx" |sed -e "s/\(..\)/ /g")"
else
rxOut="$(echo -n "$UTF8" |perl -l -ne '/^([%pre%0-7]|[0-7][0-7]|[0-7][0-7]{2}|[0-7][0-7]{3}|[0-3][0-7]{4}|[4-5][0-7]{5})*$/ or print' )"
fi
fi
if [[ "$rxOut" == "" ]] ;then
((D==1)) && echo " rcRegex: ok"
rcRegex=0
else
((D==1)) && echo -n "bits-$bits rcRegex: error $hexUTF32BE .. 'strict' failed,"
((D==1)) && if [[ "12" == *$Test* ]] ;then
echo # " (codepoint) Test $Test"
else
echo
fi
rcRegex=1
fi
fi
#
elif [[ $Test == 2 ]]
then # Test 2. Throw a randomizing spanner into the works!
# Then test the arbitary bytes ASIS
#
hexLineRand="$(echo -n "$hexUTF32BE" |
sed -re "s/(.)(.)(.)(.)(.)(.)(.)(.)/\n\n\n\n\n\n\n/" |
sort -R |
tr -d '\n')"
#
elif [[ $Test == 3 ]]
then # Test 3. Test single UTF-16BE bytes in the range 0x00000000 to 0x7FFFFFFF
#
echo "Test 3 is not properly implemented yet.. Exiting"
exit 99
else
echo "ERROR: Invalid mode"
exit
fi
#
#
if ((Test==1 || Test=2)) ;then
if ((modebits==strict && CPDec<=$((0xFFFF)))) ;then
((rcIconv=rcIco16))
else
((rcIconv=rcIco32))
fi
if ((rcRegex!=rcIconv)) ;then
[[ $Test != 1 ]] && echo
if ((rcRegex==1)) ;then
echo "ERROR: 'regex' ok, but NOT 'iconv': ${hexUTF32BE} "
else
echo "ERROR: 'iconv' ok, but NOT 'regex': ${hexUTF32BE} "
fi
((failCt++));
elif ((rcRegex!=0)) ;then
# ((invalCt++)); echo -ne "$hexUTF32BE exit-codes $${rcIco16}${rcIco32}=,$rcRegex\t: $(printf "%0.8X\n" $invalCt)\t$hexLine$(printf "%$(((mode3whi*2)-${#hexLine}))s")\r"
((invalCt++))
else
((validCt++))
fi
if ((Test==1)) ;then
echo -ne "$hexUTF32BE " "mode=${mode[$modebits]} test-return=($rcIconv,$rcRegex) valid,invalid,fail=($(printf "%X" $validCt),$(printf "%X" $invalCt),$(printf "%X" $failCt)) \r"
else
echo -ne "$hexUTF32BE $rx mode=${mode[$modebits]} test-return=($rcIconv,$rcRegex) val,inval,fail=($(printf "%X" $validCt),$(printf "%X" $invalCt),$(printf "%X" $failCt))\r"
fi
fi
done
} # End time
fi
exit
0-7] # 1-byte pattern
|[0-7][0-7] # 2-byte pattern
|[0-7][0-7]{2} # 3-byte pattern
|[0-7][0-7]{3} # 4-byte pattern
|[0-3][0-7]{4} # 5-byte pattern
|[4-5][0-7]{5} # 6-byte pattern
)*$ /x or print'
Eu acho uconv
(em icu-devtools
package no Debian) útil para inspecionar dados UTF-8:
$ print '\xE9 \xe9 \u20ac \ud800\udc00 \U110000' |
uconv --callback escape-c -t us
\xE9 \xE9 \u20ac \xED\xA0\x80\xED\xB0\x80 \xF4\x90\x80\x80
(O \x
s ajuda a identificar os caracteres inválidos (exceto o falso positivo introduzido voluntariamente com um literal \xE9
acima)).
(muitos outros usos agradáveis).
O Python tem uma função unicode
integrada desde a versão 2.0.
#!/usr/bin/env python2
import sys
for line in sys.stdin:
try:
unicode(line, 'utf-8')
except UnicodeDecodeError:
sys.stdout.write(line)
No Python 3, unicode
foi dobrado em str
. Ele precisa ser passado por um objeto semelhante a bytes , aqui o buffer
objetos para o descritores padrão .
#!/usr/bin/env python3
import sys
for line in sys.stdin.buffer:
try:
str(line, 'utf-8')
except UnicodeDecodeError:
sys.stdout.buffer.write(line)
Eu me deparei com um problema semelhante (detalhe na seção "Contexto") e cheguei com a seguinte solução ftfy_line_by_line.py :
#!/usr/bin/env python3
import ftfy, sys
with open(sys.argv[1], mode='rt', encoding='utf8', errors='replace') as f:
for line in f:
sys.stdout.buffer.write(ftfy.fix_text(line).encode('utf8', 'replace'))
#print(ftfy.fix_text(line).rstrip().decode(encoding="utf-8", errors="replace"))
Usando codificar + substituir + ftfy para corrigir automaticamente Mojibake e outras correções.
Coletei > 10GiB CSV de metadados do sistema de arquivos básico usando o seguinte script gen_basic_files_metadata.csv.sh , executando essencialmente :
find "${path}" -type f -exec stat --format="%i,%Y,%s,${hostname},%m,%n" "{}" \;
O problema que tive foi com codificação inconsistente de nomes de arquivos em sistemas de arquivos, causando UnicodeDecodeError
ao processar mais com aplicativos python (csvsql para ser mais específico).
Por isso, apliquei acima do script ftfy e foi necessário
Por favor, note que ftfy é muito lento, processando os > 10GiB:
real 147m35.182s
user 146m14.329s
sys 2m8.713s
enquanto sha256sum para comparação:
real 6m28.897s
user 1m9.273s
sys 0m6.210s
na CPU Intel Core i7-3520M a 2.90GHz + 16GiB RAM (e dados na unidade externa)